A new discretization methodology for diffusion problems on generalized polyhedral meshes

نویسندگان

  • Franco Brezzi
  • Konstantin Lipnikov
  • Mikhail Shashkov
  • Valeria Simoncini
چکیده

We develop a family of inexpensive discretization schemes for diffusion problems on generalized polyhedral meshes with elements having non-planar faces. The material properties are described by a full tensor. We also prove superconvergence for the scalar (pressure) variable under very general assumptions. The theoretical results are confirmed with numerical experiments. In the practically important case of logically cubic meshes with randomly perturbed nodes, the mixed finite element with the lowest order Raviart–Thomas elements does not converge while the proposed mimetic method has the optimal convergence rate. 2007 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A mimetic tensor artificial viscosity method for arbitrary polyhedral meshes

We construct a new mimetic tensor artificial viscosity on general polyhedral meshes. The tensor viscosity is designed as a discretization of the differential operator div (μ∇u) with the full fourth-order tensor μ. We demonstrate performance of the new artificial viscosity on a set of test problems.

متن کامل

The mimetic finite difference discretization of diffusion problem on unstructured polyhedral meshes

We study the mimetic finite difference discretization of diffusion-type problems on unstructured polyhedral meshes. We demonstrate high accuracy of the approximate solutions for general diffusion tensors, the second-order convergence rate for the scalar unknown and the first order convergence rate for the vector unknown on smooth or slightly distorted meshes, on non-matching meshes, and even on...

متن کامل

A family of mimetic finite difference methods on polygonal and polyhedral meshes

A family of inexpensive discretization schemes for diffusion problems on unstructured polygonal and polyhedral meshes is introduced. The material properties are described by a full tensor. The theoretical results are confirmed with numerical experiments.

متن کامل

Non-conforming Mixed Finite Element Methods for Diffusion Equation

In this dissertation, we consider new approaches to the construction of meshes, discretization, and preconditioning of the resulting algebraic systems for the diffusion equation with discontinuous coefficients. In the first part, we discuss mixed finite element approximations of the diffusion equation on general polyhedral meshes. We introduce a non-conforming approximation method for the flux ...

متن کامل

Convergence Analysis of the mimetic Finite Difference Method for Elliptic Problems with Staggered Discretizations of Diffusion Coefficients

We propose a family of mimetic discretization schemes for elliptic problems including convection and reaction terms. Our approach is an extension of the mimetic methodology for purely diffusive problems on unstructured polygonal and polyhedral meshes. The a priori error analysis relies on the connection between the mimetic formulation and the lowest order Raviart–Thomas mixed finite element met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005